Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Clin Virol ; 165: 105496, 2023 08.
Article in English | MEDLINE | ID: covidwho-2328174

ABSTRACT

BACKGROUND/PURPOSE: While current guidelines recommend the use of respiratory tract specimens for the direct detection of SARS-CoV-2 infection, saliva has recently been suggested as preferred sample type for the sensitive detection of SARS-CoV-2 B.1.1.529 (Omicron). By comparing saliva collected using buccal swabs and oro-/nasopharyngeal swabs from patients hospitalized due to COVID-19, we aimed at identifying potential differences in virus detection sensitivity between these sample types. METHODS: We compare the clinical diagnostic sensitivity of paired buccal swabs and combined oro-/nasopharyngeal swabs from hospitalized, symptomatic COVID-19 patients collected at median six days after symptom onset by real-time polymerase chain reaction (PCR) and antigen test. RESULTS: Of the tested SARS-CoV-2 positive sample pairs, 55.8% were identified as SARS-CoV-2 Omicron BA.1 and 44.2% as Omicron BA.2. Real-time PCR from buccal swabs generated significantly higher quantification cycle (Cq) values compared to those from matched combined oro-/nasopharyngeal swabs and resulted in an increased number of false-negative PCR results. Reduced diagnostic sensitivity of buccal swabs by real-time PCR was observed already at day one after symptom onset. Similarly, antigen test detection rates were reduced in buccal swabs compared to combined oro-/nasopharyngeal swabs. CONCLUSION: Our results suggest reduced clinical diagnostic sensitivity of saliva collected using buccal swabs when compared to combined oro-/nasopharyngeal swabs in the detection of SARS-CoV-2 Omicron in symptomatic individuals.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Saliva , Real-Time Polymerase Chain Reaction , Nasopharynx , Specimen Handling , COVID-19 Testing
2.
PLoS One ; 18(4): e0285203, 2023.
Article in English | MEDLINE | ID: covidwho-2305284

ABSTRACT

BACKGROUND: In May 2022, the monkeypox virus (MPXV) spread into non-endemic countries and the global community was quick to test the lessons learned from the SARS-CoV-2 pandemic. Due to its symptomatic resemblance to other diseases, like the non-pox virus varicella zoster (chickenpox), polymerase chain reaction methods play an important role in correctly diagnosing the rash-causing pathogen. INSTAND quickly established a new external quality assessment (EQA) scheme for MPXV and orthopoxvirus (OPXV) DNA detection to assess the current performance quality of the laboratory tests. METHODS: We analyzed quantitative and qualitative data of the first German EQA for MPXV and OPXV DNA detection. The survey included one negative and three MPXV-positive samples with different MPX viral loads. The threshold cycle (Ct) or other measures defining the quantification cycle (Cq) were analyzed in an assay-specific manner. A Passing Bablok fit was used to investigate the performance at laboratory level. RESULTS: 141 qualitative datasets were reported by 131 laboratories for MPXV detection and 68 qualitative datasets by 65 laboratories for OPXV detection. More than 96% of the results were correctly identified as negative and more than 97% correctly identified as positive. An analysis of the reported Ct/Cq values showed a large spread of these values of up to 12 Ct/Cq. Nevertheless, there is a good correlation of results for the different MPXV concentrations at laboratory level. Only a few quantitative results in copies/mL were reported (MPXV: N = 5; OPXV: N = 2), but the results correlated well with the concentration differences between the EQA samples, which were to a power of ten each. CONCLUSION: The EQA results show that laboratories performed well in detecting both MPXV and OPXV. However, Ct/Cq values should be interpreted with caution when conclusions are drawn about the viral load as long as metrological traceability is not granted.


Subject(s)
COVID-19 , Monkeypox , Orthopoxvirus , Humans , Monkeypox virus/genetics , SARS-CoV-2/genetics
3.
Euro Surveill ; 28(16)2023 04.
Article in English | MEDLINE | ID: covidwho-2302104

ABSTRACT

BackgroundThere are conflicting reports on the performance of rapid antigen detection tests (RDT) in the detection of the SARS-CoV-2 Omicron (B.1.1.529) variant; however, these tests continue to be used frequently to detect potentially contagious individuals with high viral loads.AimThe aim of this study was to investigate comparative detection of the Delta (B.1.617.2) and Omicron variants by using a selection of 20 RDT and a limited panel of pooled combined oro- and nasopharyngeal clinical Delta and Omicron specimens.MethodsWe tested 20 CE-marked RDT for their performance to detect SARS-CoV-2 Delta and Omicron by using a panel of pooled clinical specimens collected in January 2022 in Berlin, Germany.ResultsWe observed equivalent detection performance for Delta and Omicron for most RDT, and sensitivity was widely in line with our previous pre-Delta/Omicron evaluation. Some variation for individual RDT was observed either for Delta vs Omicron detection, or when compared with the previous evaluation, which may be explained both by different panel sizes resulting in different data robustness and potential limitation of batch-to-batch consistency. Additional experiments with three RDT using non-pooled routine clinical samples confirmed comparable performance to detect Delta vs Omicron. Overall, RDT that were previously positively evaluated retained good performance also for Delta and Omicron variants.ConclusionOur findings suggest that currently available RDT are sufficient for the detection of SARS-CoV-2 Delta and Omicron variants.


Subject(s)
COVID-19 Serological Testing , COVID-19 , SARS-CoV-2 , Humans , Berlin , COVID-19/diagnosis , Germany , SARS-CoV-2/genetics , COVID-19 Serological Testing/methods
4.
Front Immunol ; 14: 1056525, 2023.
Article in English | MEDLINE | ID: covidwho-2262698

ABSTRACT

Currently available COVID-19 vaccines include inactivated virus, live attenuated virus, mRNA-based, viral vectored and adjuvanted protein-subunit-based vaccines. All of them contain the spike glycoprotein as the main immunogen and result in reduced disease severity upon SARS-CoV-2 infection. While we and others have shown that mRNA-based vaccination reactivates pre-existing, cross-reactive immunity, the effect of vector vaccines in this regard is unknown. Here, we studied cellular and humoral responses in heterologous adenovirus-vector-based ChAdOx1 nCOV-19 (AZ; Vaxzeria, AstraZeneca) and mRNA-based BNT162b2 (BNT; Comirnaty, BioNTech/Pfizer) vaccination and compared it to a homologous BNT vaccination regimen. AZ primary vaccination did not lead to measurable reactivation of cross-reactive cellular and humoral immunity compared to BNT primary vaccination. Moreover, humoral immunity induced by primary vaccination with AZ displayed differences in linear spike peptide epitope coverage and a lack of anti-S2 IgG antibodies. Contrary to primary AZ vaccination, secondary vaccination with BNT reactivated pre-existing, cross-reactive immunity, comparable to homologous primary and secondary mRNA vaccination. While induced anti-S1 IgG antibody titers were higher after heterologous vaccination, induced CD4+ T cell responses were highest in homologous vaccinated. However, the overall TCR repertoire breadth was comparable between heterologous AZ-BNT-vaccinated and homologous BNT-BNT-vaccinated individuals, matching TCR repertoire breadths after SARS-CoV-2 infection, too. The reasons why AZ and BNT primary vaccination elicits different immune response patterns to essentially the same antigen, and the associated benefits and risks, need further investigation to inform vaccine and vaccination schedule development.


Subject(s)
BNT162 Vaccine , COVID-19 , ChAdOx1 nCoV-19 , Cross Reactions , Humans , BNT162 Vaccine/immunology , ChAdOx1 nCoV-19/immunology , COVID-19/prevention & control , Receptors, Antigen, T-Cell , SARS-CoV-2 , Vaccination
5.
Infection ; 2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2282651

ABSTRACT

PURPOSE: COViK, a prospective hospital-based multicenter case-control study in Germany, aims to assess the effectiveness of COVID-19 vaccines against severe disease. Here, we report vaccine effectiveness (VE) against COVID-19-caused hospitalization and intensive care treatment during the Omicron wave. METHODS: We analyzed data from 276 cases with COVID-19 and 494 control patients recruited in 13 hospitals from 1 December 2021 to 5 September 2022. We calculated crude and confounder-adjusted VE estimates. RESULTS: 21% of cases (57/276) were not vaccinated, compared to 5% of controls (26/494; p < 0.001). Confounder-adjusted VE against COVID-19-caused hospitalization was 55.4% (95% CI: 12-78%), 81.5% (95% CI: 68-90%) and 95.6% (95%CI: 88-99%) after two, three and four vaccine doses, respectively. VE against hospitalization due to COVID-19 remained stable up to one year after three vaccine doses. CONCLUSION: Three vaccine doses remained highly effective in preventing severe disease and this protection was sustained; a fourth dose further increased protection.

6.
Vaccine ; 41(2): 290-293, 2023 01 09.
Article in English | MEDLINE | ID: covidwho-2245460

ABSTRACT

We included 852 patients in a prospectively recruiting multicenter matched case-control study in Germany to assess vaccine effectiveness (VE) in preventing COVID-19-associated hospitalization during the Delta-variant dominance. The two-dose VE was 89 % (95 % CI 84-93 %) overall, 79 % in patients with more than two comorbidities and 77 % in adults aged 60-75 years. A third dose increased the VE to more than 93 % in all patient-subgroups.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Case-Control Studies , COVID-19/prevention & control , Hospitalization , Hospitals , Germany/epidemiology
7.
Virol J ; 20(1): 21, 2023 02 06.
Article in English | MEDLINE | ID: covidwho-2232287

ABSTRACT

BACKGROUND: SARS-CoV-2 replicates efficiently in the upper airways of humans and produces high loads of virus RNA and, at least in the initial phase after infection, many infectious virus particles. Studying virus ultrastructure, such as particle integrity or presence of spike proteins, and effects on their host cells in patient samples is important to understand the pathogenicity of SARS-CoV-2. METHODS: Suspensions from swab samples with a high load of virus RNA (Ct < 20) were sedimented by desktop ultracentrifugation and prepared for thin section electron microscopy using a novel method which is described in detail. Embedding was performed in Epon or in LR White resin using standard or rapid protocols. Thin sections were examined using transmission electron microscopy. RESULTS: Virus particles could be regularly detected in the extracellular space, embedded in a background of heterogenous material (e.g. vesicles and needle-like crystals), and within ciliated cells. Morphology (i.e. shape, size, spike density) of virus particles in the swab samples was very similar to particle morphology in cell culture. However, in some of the samples the virus particles hardly revealed spikes. Infected ciliated cells occasionally showed replication organelles, such as double-membrane vesicles. The most common cells in all samples were keratinocytes from the mucosa and bacteria. CONCLUSIONS: The new method allows the ultrastructural visualization and analysis of coronavirus particles and of infected host cells from easy to collect naso/oropharyngeal patient swab samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Specimen Handling/methods , Microscopy, Electron, Transmission , RNA
8.
Front Pediatr ; 10: 989456, 2022.
Article in English | MEDLINE | ID: covidwho-2142167

ABSTRACT

Objective: To investigate SARS-COV-2 viral clearance and viral load kinetics in the course of infection in children aged 1-6 years in comparison with adults. Methods: Prospective cohort study of infected daycare children and staff and their close contacts in households from 11/2020 to 06/2021. Adult participants took upper respiratory tract specimen from themselves and/or their children, for PCR tests on SARS-CoV-2. Data on symptoms and exposure were used to determine the date of probable infection for each participant. We determined (a) viral clearance, and (b) viral load dynamics over time. Samples were taken from day 4-6 to day 16-18 after diagnosis of the index case in the respective daycare group (5 samples per participant). Results: We included 40 children (1-6 years) and 67 adults (18-77 years) with SARS-CoV-2 infection. Samples were available at a mean of 4.3 points of time per participant. Among the participants, the 12-day study period fell in different periods within the individual course of infection, ranging from day 5-17 to day 15-26 after assumed infection.Children reached viral clearance at a median of 20 days after assumed infection (95% CI 17-21 days, Kaplan-Meier Analysis), adults at 23 days (95% CI 20-25 days, difference not significant). In both children and adults, viral load decreased over time with trajectories of the mean viral load not being statistically different between groups. Kaplan-Meier calculations show that from day 15 (95% CI 13-15), 50% of all participants had a viral load <1 million copies/ml, i.e. were no longer infectious or negative. Conclusion: Children aged 1-6 and adults infected with SARS-CoV-2 (wild type and Alpha variant) did not differ significantly in terms of viral load kinetics and time needed to clear the virus. Therefore, containment measures are important also in the daycare settings as long as the pandemic continues.

9.
PLoS One ; 17(11): e0277699, 2022.
Article in English | MEDLINE | ID: covidwho-2119398

ABSTRACT

BACKGROUND: Superspreading events are important drivers of the SARS-CoV-2 pandemic and long-range (LR) transmission is believed to play a major role. We investigated two choir outbreaks with different attack rates (AR) to analyze the contribution of LR transmission and highlight important measures for prevention. METHODS: We conducted two retrospective cohort studies and obtained demographic, clinical, laboratory and contact data, performed SARS-CoV-2 serology, whole genome sequencing (WGS), calculated LR transmission probabilities, measured particle emissions of selected choir members, and calculated particle air concentrations and inhalation doses. RESULTS: We included 65 (84%) and 42 (100%) members of choirs 1 and 2, respectively, of whom 58 (89%) and 10 (24%) became cases. WGS confirmed strain identity in both choirs. Both primary cases transmitted presymptomatically. Particle emission rate when singing was 7 times higher compared to talking. In choir 1, the median concentration of primary cases' emitted particles in the room was estimated to be 8 times higher, exposure at least 30 minutes longer and room volume smaller than in choir 2, resulting in markedly different estimated probabilities for LR transmission (mode: 90% vs. 16%, 95% CI: 80-95% vs. 6-36%). According to a risk model, the first transmission in choir 1 occurred likely after 8 minutes of singing. CONCLUSIONS: The attack rate of the two choirs differed significantly reflecting the differences in LR transmission risks. The pooled proportion of cases due to LR transmission was substantial (81%; 55/68 cases) and was facilitated by likely highly infectious primary cases, high particle emission rates, and indoor rehearsing for an extended time. Even in large rooms, singing of an infectious person may lead to secondary infections through LR exposure within minutes. In the context of indoor gatherings without mask-wearing and waning or insufficient immunity, these results highlight the ongoing importance of non-pharmaceutical interventions wherever aerosols can accumulate.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Berlin , Retrospective Studies , COVID-19/epidemiology , Disease Outbreaks , Germany/epidemiology
10.
Sci Rep ; 12(1): 19492, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2119364

ABSTRACT

Pre-vaccine SARS-CoV-2 seroprevalence data from Germany are scarce outside hotspots, and socioeconomic disparities remained largely unexplored. The nationwide representative RKI-SOEP study (15,122 participants, 18-99 years, 54% women) investigated seroprevalence and testing in a supplementary wave of the Socio-Economic-Panel conducted predominantly in October-November 2020. Self-collected oral-nasal swabs were PCR-positive in 0.4% and Euroimmun anti-SARS-CoV-2-S1-IgG ELISA from dry-capillary-blood antibody-positive in 1.3% (95% CI 0.9-1.7%, population-weighted, corrected for sensitivity = 0.811, specificity = 0.997). Seroprevalence was 1.7% (95% CI 1.2-2.3%) when additionally correcting for antibody decay. Overall infection prevalence including self-reports was 2.1%. We estimate 45% (95% CI 21-60%) undetected cases and lower detection in socioeconomically deprived districts. Prior SARS-CoV-2 testing was reported by 18% from the lower educational group vs. 25% and 26% from the medium and high educational group (p < 0.001, global test over three categories). Symptom-triggered test frequency was similar across educational groups. Routine testing was more common in low-educated adults, whereas travel-related testing and testing after contact with infected persons was more common in highly educated groups. This countrywide very low pre-vaccine seroprevalence in Germany at the end of 2020 can serve to evaluate the containment strategy. Our findings on social disparities indicate improvement potential in pandemic planning for people in socially disadvantaged circumstances.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adult , Female , Male , Seroepidemiologic Studies , COVID-19 Testing , Travel , COVID-19/diagnosis , COVID-19/epidemiology , Travel-Related Illness , Antibodies, Viral , Immunoglobulin G
11.
PLoS One ; 17(3): e0264855, 2022.
Article in English | MEDLINE | ID: covidwho-1896450

ABSTRACT

Since December 2019 the world has been facing the outbreak of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Identification of infected patients and discrimination from other respiratory infections have so far been accomplished by using highly specific real-time PCRs. Here we present a rapid multiplex approach (RespiCoV), combining highly multiplexed PCRs and MinION sequencing suitable for the simultaneous screening for 41 viral and five bacterial agents related to respiratory tract infections, including the human coronaviruses NL63, HKU1, OC43, 229E, Middle East respiratory syndrome coronavirus, SARS-CoV, and SARS-CoV-2. RespiCoV was applied to 150 patient samples with suspected SARS-CoV-2 infection and compared with specific real-time PCR. Additionally, several respiratory tract pathogens were identified in samples tested positive or negative for SARS-CoV-2. Finally, RespiCoV was experimentally compared to the commercial RespiFinder 2SMART multiplex screening assay (PathoFinder, The Netherlands).


Subject(s)
Bacteria/genetics , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , RNA Viruses/genetics , Respiratory Tract Infections/diagnosis , SARS-CoV-2/genetics , Bacteria/isolation & purification , COVID-19/virology , Coronavirus/genetics , Coronavirus/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , Humans , Multiplex Polymerase Chain Reaction , Nanopores , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , RNA Viruses/isolation & purification , RNA, Viral/chemistry , RNA, Viral/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification
12.
J Health Monit ; 6(Suppl 1): 2-16, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1856609

ABSTRACT

The SARS-CoV-2 coronavirus has spread rapidly across Germany. Infections are likely to be under-recorded in the notification data from local health authorities on laboratory-confirmed cases since SARS-CoV-2 infections can proceed with few symptoms and then often remain undetected. Seroepidemiological studies allow the estimation of the proportion in the population that has been infected with SARS-CoV-2 (seroprevalence) as well as the extent of undetected infections. The 'CORONA-MONITORING bundesweit' study (RKI-SOEP study) collects biospecimens and interview data in a nationwide population sample drawn from the German Socio-Economic Panel (SOEP). Participants are sent materials to self-collect a dry blood sample of capillary blood from their finger and a swab sample from their mouth and nose, as well as a questionnaire. The samples returned are tested for SARS-CoV-2 IgG antibodies and SARS-CoV-2 RNA to identify past or present infections. The methods applied enable the identification of SARS-CoV-2 infections, including those that previously went undetected. In addition, by linking the data collected with available SOEP data, the study has the potential to investigate social and health-related differences in infection status. Thus, the study contributes to an improved understanding of the extent of the epidemic in Germany, as well as identification of target groups for infection protection.

13.
BMC Infect Dis ; 22(1): 80, 2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1649812

ABSTRACT

BACKGROUND: SARS-CoV-2 cases in Germany increased in early March 2020. By April 2020, cases among health care workers (HCW) were detected across departments at a tertiary care hospital in Berlin, prompting a longitudinal investigation to assess HCW SARS-CoV-2 serostatus with an improved testing strategy and associated risk factors. METHODS: In May/June and December 2020, HCWs voluntarily provided blood for serology and nasopharyngeal/oropharyngeal (NP/OP) samples for real-time polymerase chain reaction (PCR) and completed a questionnaire. A four-tiered SARS-CoV-2 serological testing strategy including two different enzyme-linked immunosorbent assays (ELISA) and biological neutralization test (NT) was used. ELISA-NT correlation was assessed using Pearson's correlation coefficient. Sociodemographic and occupational factors associated with seropositivity were assessed with multivariate logistic regression. RESULTS: In May/June, 18/1477 (1.2%) HCWs were SARS-CoV-2 seropositive, followed by 56/1223 (4.6%) in December. Among those tested in both, all seropositive in May/June remained seropositive by ELISA and positive by NT after 6 months. ELISA ratios correlated well with NT titres in May/June (R = 0.79) but less so in December (R = 0.41). Those seropositive reporting a past SARS-CoV-2 positive PCR result increased from 44.4% in May/June to 85.7% in December. HCWs with higher occupational risk (based on profession and working site), nurses, males, and those self-reporting COVID-19-like symptoms had significantly higher odds of seropositivity. CONCLUSIONS: This investigation provides insight into the burden of HCW infection in this local outbreak context and the antibody dynamics over time with an improved robust testing strategy. It also highlights the continued need for effective infection control measures particularly among HCWs with higher occupational risk.


Subject(s)
COVID-19 , SARS-CoV-2 , Germany/epidemiology , Health Personnel , Humans , Male , Tertiary Care Centers
14.
PLoS One ; 17(1): e0262656, 2022.
Article in English | MEDLINE | ID: covidwho-1638777

ABSTRACT

SARS-CoV-2, the cause of COVID-19, requires reliable diagnostic methods to track the circulation of this virus. Following the development of RT-qPCR methods to meet this diagnostic need in January 2020, it became clear from interlaboratory studies that the reported Ct values obtained for the different laboratories showed high variability. Despite this the Ct values were explored as a quantitative cut off to aid clinical decisions based on viral load. Consequently, there was a need to introduce standards to support estimation of SARS-CoV-2 viral load in diagnostic specimens. In a collaborative study, INSTAND established two reference materials (RMs) containing heat-inactivated SARS-CoV-2 with SARS-CoV-2 RNA loads of ~107 copies/mL (RM 1) and ~106 copies/mL (RM 2), respectively. Quantification was performed by RT-qPCR using synthetic SARS-CoV-2 RNA standards and digital PCR. Between November 2020 and February 2021, German laboratories were invited to use the two RMs to anchor their Ct values measured in routine diagnostic specimens, with the Ct values of the two RMs. A total of 305 laboratories in Germany were supplied with RM 1 and RM 2. The laboratories were requested to report their measured Ct values together with details on the PCR method they used to INSTAND. This resultant 1,109 data sets were differentiated by test system and targeted gene region. Our findings demonstrate that an indispensable prerequisite for linking Ct values to SARS-CoV-2 viral loads is that they are treated as being unique to an individual laboratory. For this reason, clinical guidance based on viral loads should not cite Ct values. The RMs described were a suitable tool to determine the specific laboratory Ct for a given viral load. Furthermore, as Ct values can also vary between runs when using the same instrument, such RMs could be used as run controls to ensure reproducibility of the quantitative measurements.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Diagnostic Tests, Routine/methods , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Viral Load/methods , COVID-19/epidemiology , COVID-19/virology , Genes, Viral , Germany/epidemiology , Humans , Reproducibility of Results
15.
Front Public Health ; 9: 773850, 2021.
Article in English | MEDLINE | ID: covidwho-1607729

ABSTRACT

Introduction: Until today, the role of children in the transmission dynamics of SARS-CoV-2 and the development of the COVID-19 pandemic seems to be dynamic and is not finally resolved. The primary aim of this study is to investigate the transmission dynamics of SARS-CoV-2 in child day care centers and connected households as well as transmission-related indicators and clinical symptoms among children and adults. Methods and Analysis: COALA ("Corona outbreak-related examinations in day care centers") is a day care center- and household-based study with a case-ascertained study design. Based on day care centers with at least one reported case of SARS-CoV-2, we include one- to six-year-old children and staff of the affected group in the day care center as well as their respective households. We visit each child's and adult's household. During the home visit we take from each household member a combined mouth and nose swab as well as a saliva sample for analysis of SARS-CoV-2-RNA by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) and a capillary blood sample for a retrospective assessment of an earlier SARS-CoV-2 infection. Furthermore, information on health status, socio-demographics and COVID-19 protective measures are collected via a short telephone interview in the subsequent days. In the following 12 days, household members (or parents for their children) self-collect the same respiratory samples as described above every 3 days and a stool sample for children once. COVID-19 symptoms are documented daily in a symptom diary. Approximately 35 days after testing the index case, every participant who tested positive for SARS-CoV-2 during the study is re-visited at home for another capillary blood sample and a standardized interview. The analysis includes secondary attack rates, by age of primary case, both in the day care center and in households, as well as viral shedding dynamics, including the beginning of shedding relative to symptom onset and viral clearance. Discussion: The results contribute to a better understanding of the epidemiological and virological transmission-related indicators of SARS-CoV-2 among young children, as compared to adults and the interplay between day care and households.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Child, Preschool , Day Care, Medical , Disease Outbreaks , Germany/epidemiology , Humans , Infant , Pandemics , Retrospective Studies
16.
Front Med (Lausanne) ; 8: 749588, 2021.
Article in English | MEDLINE | ID: covidwho-1556183

ABSTRACT

Background: Testing of possibly infected individuals remains cornerstone of containing the spread of SARS-CoV-2. Detection dogs could contribute to mass screening. Previous research demonstrated canines' ability to detect SARS-CoV-2-infections but has not investigated if dogs can differentiate between COVID-19 and other virus infections. Methods: Twelve dogs were trained to detect SARS-CoV-2 positive samples. Three test scenarios were performed to evaluate their ability to discriminate SARS-CoV-2-infections from viral infections of a different aetiology. Naso- and oropharyngeal swab samples from individuals and samples from cell culture both infected with one of 15 viruses that may cause COVID-19-like symptoms were presented as distractors in a randomised, double-blind study. Dogs were either trained with SARS-CoV-2 positive saliva samples (test scenario I and II) or with supernatant from cell cultures (test scenario III). Results: When using swab samples from individuals infected with viruses other than SARS-CoV-2 as distractors (test scenario I), dogs detected swab samples from SARS-CoV-2-infected individuals with a mean diagnostic sensitivity of 73.8% (95% CI: 66.0-81.7%) and a specificity of 95.1% (95% CI: 92.6-97.7%). In test scenario II and III cell culture supernatant from cells infected with SARS-CoV-2, cells infected with other coronaviruses and non-infected cells were presented. Dogs achieved mean diagnostic sensitivities of 61.2% (95% CI: 50.7-71.6%, test scenario II) and 75.8% (95% CI: 53.0-98.5%, test scenario III), respectively. The diagnostic specificities were 90.9% (95% CI: 87.3-94.6%, test scenario II) and 90.2% (95% CI: 81.1-99.4%, test scenario III), respectively. Conclusion: In all three test scenarios the mean specificities were above 90% which indicates that dogs can distinguish SARS-CoV-2-infections from other viral infections. However, compared to earlier studies our scent dogs achieved lower diagnostic sensitivities. To deploy COVID-19 detection dogs as a reliable screening method it is therefore mandatory to include a variety of samples from different viral respiratory tract infections in dog training to ensure a successful discrimination process.

17.
Euro Surveill ; 26(44)2021 11.
Article in English | MEDLINE | ID: covidwho-1504591

ABSTRACT

IntroductionThe detection of SARS-CoV-2 with rapid diagnostic tests (RDT) has become an important tool to identify infected people and break infection chains. These RDT are usually based on antigen detection in a lateral flow approach.AimWe aimed to establish a comprehensive specimen panel for the decentralised technical evaluation of SARS-CoV-2 antigen rapid diagnostic tests.MethodsWhile for PCR diagnostics the validation of a PCR assay is well established, there is no common validation strategy for antigen tests, including RDT. In this proof-of-principle study we present the establishment of a panel of 50 pooled clinical specimens that cover a SARS-CoV-2 concentration range from 1.1 × 109 to 420 genome copies per mL of specimen. The panel was used to evaluate 31 RDT in up to six laboratories.ResultsOur results show that there is considerable variation in the detection limits and the clinical sensitivity of different RDT. We show that the best RDT can be applied to reliably identify infectious individuals who present with SARS-CoV-2 loads down to 106 genome copies per mL of specimen. For the identification of infected individuals with SARS-CoV-2 loads corresponding to less than 106 genome copies per mL, only three RDT showed a clinical sensitivity of more than 60%.ConclusionsSensitive RDT can be applied to identify infectious individuals with high viral loads but not to identify all infected individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Diagnostic Tests, Routine , Humans , Sensitivity and Specificity , Serologic Tests
18.
Int J Infect Dis ; 110: 261-266, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1373061

ABSTRACT

INTRODUCTION: Containing COVID-19 requires broad-scale testing. However, sample collection requires qualified personnel and protective equipment and may cause transmission. We assessed the sensitivity of SARS-CoV-2-rtPCR applying three self-sampling techniques as compared to professionally collected oro-nasopharyngeal samples (cOP/NP). METHODS: From 62 COVID-19 outpatients, we obtained: (i) multi-swab, MS; (ii) saliva sponge combined with nasal vestibula, SN; (iii) gargled water, GW; (iv) professionally collected cOP/NP (standard). We compared ct-values for E-gene and ORF1ab and analysed variables reducing sensitivity of self-collecting procedures. RESULTS: The median ct-values for E-gene and ORF1ab obtained in cOP/NP samples were 20.7 and 20.2, in MS samples 22.6 and 21.8, in SN samples 23.3 and 22.3, and in GW samples 30.3 and 29.8, respectively. MS and SN samples showed sensitivities of 95.2% (95%CI, 86.5-99.0) and GW samples of 88.7% (78.1-95.3). Sensitivity was inversely correlated with ct-values, and became <90% for samples obtained more than 8 days after symptom onset. For MS and SN samples, false negativity was associated with language problems, sampling errors, and symptom duration. CONCLUSION: Conclusions from this study are limited to the sensitivity of self-sampling in mildly to moderately symptomatic patients. Still, self-collected oral/nasal/saliva samples can facilitate up-scaling of testing in early symptomatic COVID-19 patients if operational errors are minimized.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Nasopharynx , Outpatients , Saliva , Specimen Handling
19.
Front Microbiol ; 12: 651151, 2021.
Article in English | MEDLINE | ID: covidwho-1317232

ABSTRACT

Since the emergence of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in December 2019, the scientific community has been sharing data on epidemiology, diagnostic methods, and whole-genomic sequences almost in real time. The latter have already facilitated phylogenetic analyses, transmission chain tracking, protein modeling, the identification of possible therapeutic targets, timely risk assessment, and identification of novel variants. We have established and evaluated an amplification-based approach for whole-genome sequencing of SARS-CoV-2. It can be used on the miniature-sized and field-deployable sequencing device Oxford Nanopore MinION, with sequencing library preparation time of 10 min. We show that the generation of 50,000 total reads per sample is sufficient for a near complete coverage (>90%) of the SARS-CoV-2 genome directly from patient samples even if virus concentration is low (Ct 35, corresponding to approximately 5 genome copies per reaction). For patient samples with high viral load (Ct 18-24), generation of 50,000 reads in 1-2 h was shown to be sufficient for a genome coverage of >90%. Comparison to Illumina data reveals an accuracy that suffices to identify virus mutants. AmpliCoV can be applied whenever sequence information on SARS-CoV-2 is required rapidly, for instance for the identification of circulating virus mutants.

20.
Emerg Infect Dis ; 27(8): 2174-2178, 2021 08.
Article in English | MEDLINE | ID: covidwho-1261342

ABSTRACT

We detected delayed and reduced antibody and T-cell responses after BNT162b2 vaccination in 71 elderly persons (median age 81 years) compared with 123 healthcare workers (median age 34 years) in Germany. These data emphasize that nonpharmaceutical interventions for coronavirus disease remain crucial and that additional immunizations for the elderly might become necessary.


Subject(s)
COVID-19 , Adult , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19 Vaccines , Germany/epidemiology , Humans , SARS-CoV-2 , T-Lymphocytes , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL